Nucleosome eviction and activated transcription require p300 acetylation of histone H3 lysine 14.
نویسندگان
چکیده
Histone posttranslational modifications and chromatin dynamics are inextricably linked to eukaryotic gene expression. Among the many modifications that have been characterized, histone tail acetylation is most strongly correlated with transcriptional activation. In Metazoa, promoters of transcriptionally active genes are generally devoid of physically repressive nucleosomes, consistent with the contemporaneous binding of the large RNA polymerase II transcription machinery. The histone acetyltransferase p300 is also detected at active gene promoters, flanked by regions of histone hyperacetylation. Although the correlation between histone tail acetylation and gene activation is firmly established, the mechanisms by which acetylation facilitates this fundamental biological process remain poorly understood. To explore the role of acetylation in nucleosome dynamics, we utilized an immobilized template carrying a natural promoter reconstituted with various combinations of wild-type and mutant histones. We find that the histone H3 N-terminal tail is indispensable for activator, p300, and acetyl-CoA-dependent nucleosome eviction mediated by the histone chaperone Nap1. Significantly, we identify H3 lysine 14 as the essential p300 acetylation substrate required for dissociation of the histone octamer from the promoter DNA. Together, a total of 11 unique mutant octamer sets corroborated these observations and revealed a striking correlation between nucleosome eviction and strong activator and acetyl-CoA-dependent transcriptional activation. These novel findings uncover an exclusive role for H3 lysine 14 acetylation in facilitating the ATP-independent and transcription-independent disassembly of promoter nucleosomes by Nap1. Furthermore, these studies directly couple nucleosome disassembly with strong, activator-dependent transcription.
منابع مشابه
Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription
Post-translational modifications of proteins have emerged as a major mechanism for regulating gene expression. However, our understanding of how histone modifications directly affect chromatin function remains limited. In this study, we investigate acetylation of histone H3 at lysine 64 (H3K64ac), a previously uncharacterized acetylation on the lateral surface of the histone octamer. We show th...
متن کاملThe coactivators CBP/p300 and the histone chaperone NAP1 promote transcription-independent nucleosome eviction at the HTLV-1 promoter.
The human T cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T cell leukemia/lymphoma. The multifunctional virally encoded oncoprotein Tax is responsible for malignant transformation and potent activation of HTLV-1 transcription. Tax, in complex with phosphorylated cAMP response element binding protein (pCREB), strongly recruits the cellular coactivators CREB binding protein ...
متن کاملRegulation of oleosin expression in developing peanut (Arachis hypogaea L.) embryos through nucleosome loss and histone modifications.
Nucleosome loss and histone modifications are important mechanisms for transcriptional regulation. Concomitant changes in chromatin structures of two peanut (Arachis hypogaea L.) oleosin genes, AhOleo17.8 and AhOleo18.5, were examined in relation to transcriptional activity. Spatial and temporal expression analyses showed that both AhOleo17.8 and AhOleo18.5 promoters can adopt three conformatio...
متن کاملNuA4 lysine acetyltransferase Esa1 is targeted to coding regions and stimulates transcription elongation with Gcn5.
NuA4, the major H4 lysine acetyltransferase (KAT) complex in Saccharomyces cerevisiae, is recruited to promoters and stimulates transcription initiation. NuA4 subunits contain domains that bind methylated histones, suggesting that histone methylation should target NuA4 to coding sequences during transcription elongation. We show that NuA4 is cotranscriptionally recruited, dependent on its physi...
متن کاملTranscription Factor–Dependent Chromatin Remodeling at Heat Shock and Copper-Responsive Promoters in Chlamydomonas reinhardtii W OA
How transcription factors affect chromatin structure to regulate gene expression in response to changes in environmental conditions is poorly understood in the green lineage. To shed light on this issue, we used chromatin immunoprecipitation and formaldehyde-assisted isolation of regulatory elements to investigate the chromatin structure at target genes of HSF1 and CRR1, key transcriptional reg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 45 شماره
صفحات -
تاریخ انتشار 2010